
What we’re about
🖖 This virtual group is for data scientists, machine learning engineers, and open source enthusiasts.
Every month we’ll bring you diverse speakers working at the cutting edge of AI, machine learning, and computer vision.
- Are you interested in speaking at a future Meetup?
- Is your company interested in sponsoring a Meetup?
This Meetup is sponsored by Voxel51, the lead maintainers of the open source FiftyOne computer vision toolset. To learn more, visit the FiftyOne project page on GitHub.
Upcoming events (4+)
See all- Network event171 attendees from 37 groups hostingJune 20 - AI, ML and Computer Vision Meetup en EspañolLink visible for attendees
When and Where
June 20, 2025 | 9:00 – 11:00 AM Pacific
IA Generativa con Agentes: Transformando el Desarrollo de Software
La charla explora cómo expandir las capacidades de los LLMs utilizando herramientas externas mediante agentes inteligentes. Veremos cómo esta combinación transforma el desarrollo de software al automatizar tareas y colaboración con la IA.
----------
Antonio Martinez es Ingeniero de Software en Inteligencia Artificial en Intel, con una maestría en Ciencias de la Computación por la Universidad Estatal de Texas. Tiene más de 10 años de experiencia en liderazgo técnico, inteligencia artificial, visión por computador y desarrollo de software.
Trabajadores Digitales: El Futuro del Trabajo Aumentado por Agentes
En esta charla te cuento cómo, junto a mi esposa, desarrollamos una plataforma de agentes basada en LangGraph y LangChain que ha escalado nuestra atención al cliente, aumentado la satisfacción y mejorado la conversión de ventas.
Te mostraré mi arquitectura agentica con el patrón React (Reasoning-Action) + Reflection (self-validation) y cómo este agente es capaz no solo de vender, sino de hacer todo el proceso de costear el delivery, validar pagos y más.
Compartiré ejemplos reales de empresas que ya usan microautomatizaciones low-code/no-code para centrar su esfuerzo en el core del negocio.
Reflexionaremos juntos sobre un mundo laboral hiperautomatizado donde cada uno de nosotros estará potenciado por múltiples agentes digitales.
-----------
Soy Jamilton Quintero, Head de Inteligencia Artificial en Apiux Tecnología, y me apasiona diseñar arquitecturas agenticas que transformen procesos reales. Soy un apasionado de la tecnología y fiel creyente de que la información tiene que fluir libremente, por lo que me encanta contribuir al OpenSource y en comunidades.
Usando Computer Vision Para Decisiones y Expresiones Artísticas en Entornos Creativos
Uso de un sistema de control gestual para la creación de animaciones / efectos visuales creativos. Exploración de cómo Machine Learning e Inteligencia Artificial pueden facilitar la creación de experiencias inmersivas para entornos de trabajo creativos. Creación de un sistema integral que comunica Python con Unreal Engine 5 para controlar entornos 3D.
----------
Tecnólogo Creativo especializado en el uso de tecnologías emergentes dentro de entornos creativos 2D/3D para diseños visuales.
Experiencia de trabajo en Realidad Virtual y Efectos Visuales para cine y TV.Tus Datos te Están Mintiendo: Búsqueda Semántica Para Encontrar la Verdad
Los modelos de alto rendimiento comienzan con datos de alta calidad, pero encontrar muestras ruidosas, mal etiquetadas o casos límite dentro de conjuntos de datos masivos sigue siendo un gran obstáculo. En esta sesión, exploraremos un enfoque escalable para curar y refinar conjuntos de datos visuales a gran escala utilizando búsqueda semántica impulsada por embeddings basados en transformers.
Al aprovechar la búsqueda por similitud y el aprendizaje de representaciones multimodales, aprenderás a descubrir patrones ocultos, detectar inconsistencias y encontrar casos límite. También discutiremos cómo estas técnicas pueden integrarse en lagos de datos y canalizaciones a gran escala para facilitar la depuración de modelos, la optimización de conjuntos de datos y el desarrollo de modelos fundacionales más robustos en visión por computadora. Únete a nosotros para descubrir cómo la búsqueda semántica está transformando la manera en que construimos y refinamos sistemas de inteligencia artificial.
------------
Paula Ramos tiene un doctorado en Visión por Computador y Aprendizaje Automático, con más de 20 años de experiencia en el campo tecnológico. Desde principios de los años 2000 en Colombia, ha estado desarrollando tecnologías integradas de ingeniería innovadoras, principalmente en Visión por Computador, robótica y Aprendizaje Automático aplicados a la agricultura.
Durante su investigación doctoral y postdoctoral, desplegó múltiples tecnologías de computación en el borde e IoT inteligentes y de bajo costo, diseñadas para agricultores y que pueden ser operadas sin experiencia en sistemas de visión por computador. El objetivo central de la investigación de Paula ha sido desarrollar sistemas y máquinas inteligentes capaces de comprender y recrear el mundo visual que nos rodea para resolver necesidades del mundo real, como las que se presentan en la industria agrícola.
- Network event321 attendees from 37 groups hostingJune 25 - Visual AI in HealthcareLink visible for attendees
Join us for the first of several virtual events focused on the latest research, datasets and models at the intersection of visual AI and healthcare.
June 25 at 9 AM Pacific
Vision-Driven Behavior Analysis in Autism: Challenges and Opportunities
Understanding and classifying human behaviors is a long-standing goal at the intersection of computer science and behavioral science. Video-based monitoring provides a non-intrusive and scalable framework for analyzing complex behavioral patterns in real-world environments. This talk explores key challenges and emerging opportunities in AI-driven behavior analysis for individuals with autism spectrum disorder (ASD), with an emphasis on the role of computer vision in building clinically meaningful and interpretable tools.
About the Speaker
Somaieh Amraee is a postdoctoral research fellow at Northeastern University’s Institute for Experiential AI. She earned her Ph.D. in Computer Engineering and her research focuses on advancing computer vision techniques to support health and medical applications, particularly in children’s health and development.
PRISM: High-Resolution & Precise Counterfactual Medical Image Generation using Language-guided Stable Diffusion
PRISM, an explainability framework that leverages language-guided Stable Diffusion that generates high-resolution (512×512) counterfactual medical images with unprecedented precision, answering the question: “What would this patient image look like if a specific attribute is changed?” PRISM enables fine-grained control over image edits, allowing us to selectively add or remove disease-related image features as well as complex medical support devices (such as pacemakers) while preserving the rest of the image. Beyond generating high-quality images, we demonstrate that PRISM’s class counterfactuals can enhance downstream model performance by isolating disease-specific features from spurious ones — a significant advancement toward robust and trustworthy AI in healthcare.
About the Speaker
Amar Kumar is a PhD Candidate at McGill University | MILA Quebec AI Institute in the Probabilistic Vision Group (PVG). His research primarily focuses on generative AI and medical imaging, with the main objective to tackle real-world challenges like bias mitigation in deep learning models.
Building Your Medical Digital Twin — How Accurate Are LLMs Today?
We all hear about the dream of a digital twin: AI systems combining your blood tests, MRI scans, smartwatch data, and genetics to track health and plan care. But how accurate are today’s top tools like GPT-4o, Gemini, MedLLaMA, or OpenBioLLM — and what can you realistically feed them?
In this talk, we’ll explore where these models deliver, where they fall short, and what I learned testing them on my own health records.
About the Speaker
Ekaterina Kondrateva is a senior computer vision engineer with 8 years of experience in AI for healthcare, author of 20+ scientific papers, and finalist in three international MRI analysis competitions. Former head of AI research for medical imaging at HealthTech startup LightBC.
Deep Dive: Google’s MedGemma, NVIDIA’s VISTA-3D and MedSAM-2 Medical Imaging Models
In this talk, we’ll explore three medical imaging models. First, we’ll look at Google’s MedGemma open models for medical text and image comprehension, built on Gemma 3. Next,, we’ll dive into NVIDIA’s Versatile Imaging SegmenTation and Annotation (VISTA) model which combines semantic segmentation with interactivity, offering high accuracy and adaptability across diverse anatomical areas for medical imaging. Finally, we’ll explore MedSAM-2, an advanced segmentation model that utilizes Meta’s SAM 2 framework to address both 2D and 3D medical image segmentation tasks.
About the Speaker
Daniel Gural is a seasoned Machine Learning Engineer at Voxel51 with a strong passion for empowering Data Scientists and ML Engineers to unlock the full potential of their data.
- Network event262 attendees from 37 groups hostingJune 26 - Visual AI in HealthcareLink visible for attendees
Join us for one of the several virtual events focused on the latest research, datasets and models at the intersection of visual AI and healthcare.
When
June 26 at 9 AM Pacific
Where
Online. Register for the Zoom!
Multimodal AI for Efficient Medical Imaging Dataset Curation
We present a multimodal AI pipeline to streamline patient selection and quality assessment for radiology AI development. Our system evaluates patient clinical histories, imaging protocols, and data quality, embedding results into imaging metadata. Using FiftyOne researchers can rapidly filter and assemble high-quality cohorts in minutes instead of weeks, freeing radiologists for clinical work and accelerating AI tool development.
About the Speaker
Brandon Konkel is a Senior Machine Learning engineer at Booz Allen Hamilton with over a decade of experience developing AI solutions for medical imaging.
AI-Powered Heart Ultrasound: From Model Training to Real-Time App Deployment
We have built AI-driven tools to automate the assessment of key heart parameters from point-of-care ultrasound, including Right Atrial Pressure (RAP) and Ejection Fraction (EF). In collaboration with UCSF, we trained deep learning models on a proprietary dataset of over 15,000 labeled ultrasound studies and deployed the full pipeline in a real-time iOS app integrated with the Butterfly probe. A UCSF-led clinical trial has validated the RAP workflow, and we are actively expanding the system to support EF prediction using both A4C and PLAX views.
This talk will present our end-to-end pipeline, from dataset development and model training to mobile deployment—demonstrating how AI can enable real-time heart assessments directly at the point of care.
About the Speaker
Jeffrey Gao is a PhD candidate at Caltech, working at the intersection of machine learning and medical imaging. His research focuses on developing clinically deployable AI systems for ultrasound-based heart assessments, with an emphasis on real-time, edge-based inference and system integration.
Let’s Look Deep at Continuous Patient Monitoring
In hospitals, direct patient observation is limited–nurses spend only 37% of their shift engaged in patient care, and physicians average just 10 visits per hospital stay. LookDeep Health’s AI-driven platform enables continuous and passive monitoring of individual patients, and has been deployed “in the wild” for nearly 3 years. They recently published a study validating this system, titled “Continuous Patient Monitoring with AI”. This talk is a technical dive into said paper, focusing on the intersection of AI and real-world application.
About the Speaker
Paolo Gabriel, PhD is a senior AI engineer at LookDeep Health, where they continue to use computer vision and signal processing to augment patient care in the hospital.
AI in Healthcare: Lessons from Oncology Innovation
About the Speaker
Artificial intelligence is rapidly transforming how we diagnose, treat, and manage health.
Dr. Asba (AT) Tasneem is a healthcare data and innovation leader with over 20 years of experience at the intersection of clinical research, AI, and digital health. She has led large-scale programs in oncology and data strategy, partnering with organizations like the FDA, Duke University, and top pharma companies to drive AI-enabled healthcare solutions.
- June 26 - Boston AI, ML, and Computer Vision MeetupMicrosoft NERD New England Research & Development Center , Cambridge, MA
Pre-registration is mandatory to clear building security
When and Where
June 26, 2025 | 5:00 – 8:00 PM
Microsoft Research Lab – New England (NERD) at MIT
Deborah Sampson Conference Room
One Memorial Drive, Cambridge, MA, 02142Resilient Object Perception for Robotics
A broad array of applications, ranging from search and rescue to self-driving vehicles, require robots to perceive and understand the geometry of objects in the environment. Object perception needs to reliably work in a variety of scenarios and preserve a desired level of performance in the face of outliers and shifts from the training domain. Obtaining such a level of performance requires robust estimation algorithms that are able to identify and reject outliers, as well as techniques to continually improve performance of learning-based perception modules during test-time. In this talk, I discuss my three projects on this topic: (1) solvers and a graph-theoretic framework that together help achieve state-of-the-art pose estimation performance even under high outlier rates, (2) self-supervised object pose estimators that can improve performance during test-time with accuracy comparable to state-of-the-art supervised methods and (3) a test-time adaptation method for both object shape reconstruction and pose estimation without the need for CAD models.
About the Speaker
Jingnan‘s research focuses on unsupervised learning, robust estimation and robotic perception systems. He has published papers in TRO, ICRA, IROS, RSS and CVPR. He is an RSS best paper award finalist. His open source repos have been used in both industry and academia, including one of the fastest open-source libraries for point cloud registration. His blog posts have reached the Hacker News front page multiple times. He is a co-founder of a robotics startup currently in stealth mode.
Pixie: Building a Local ChatGPT Alternative using Ollama
I built Pixie out of a desire to replace my ChatGPT workflows with a local alternative. This project runs parallel to projects like LLMStudio, caters more towards Ollama models, and thus allows us to optimize for the user experience for Ollama workflows. I will go through the different philosophies at play here, design choices and how to create a system that can substitute for the “ChatGPT experience” while remaining local and open source.
About the Speaker
Suprateem Banerjee is AI Engineer trying to solve the world. I like working in fast-paced teams working on crafting novel solutions to interesting problems surrounding unstructured sensory data. I train cutting-edge predictive and generative models surrounding Computer Vision, Language, and Audio (Digital Signals)
You Can’t Do AI Without Quality APIs
The Agentic Era is here — and it runs on APIs. In today’s AI revolution, success isn’t about who has the biggest model, but who builds the highest-quality, AI-ready APIs.
From powering intelligent agents to enabling seamless orchestration, APIs are the backbone of modern AI systems. At Postman, we see how collaboration, testing, and documentation are essential to delivering APIs that truly support AI innovation. This talk explores why robust APIs are the foundation of the AI future—because in this new era, you simply can’t do AI without APIs.About the Speaker
Pooja Mistry (@poojamakes) is a Developer Advocate at Postman, an API platform empowering developers to build, test, and collaborate on APIs. As an AI and API content creator, storyteller, and keynote speaker, Pooja brings technical concepts to life — making them accessible, practical, and engaging for developers of all levels.
She’s passionate about helping new technologists build confidence, embrace emerging technologies, and find their place in the ever-evolving tech landscape. When she’s not sharing knowledge on stage or online, you’ll find her exploring the depths as an avid scuba diver.
Past events (167)
See all- Network event338 attendees from 39 groups hostingJune 19 - AI, ML and Computer Vision MeetupThis event has passed